Note

The structure of the *Streptococcus pneumoniae* type 29 polysaccharide: a re-examination

LENNART KENNE AND BENGT LINDBERG

Department of Organic Chemistry, Arrhenius Laboratory, University of Stockholm, S-106 91 Stockholm (Sweden)

(Received May 14th, 1988; accepted for publication, June 6th, 1988)

The structure of the capsular polysaccharide elaborated by *Streptococcus* pneumoniae type 29 (S-29) was investigated by Baddiley and co-workers¹. It is of the teichoic acid type and was proved to be composed of repeating units having the structure 1. The only uncertainty in this structure was whether the phosphate was linked to O-3 or O-4 of the β -D-GalpNAc residue. We have now re-investigated this structure, using n.m.r. spectroscopy.

O
$$\parallel$$
 \rightarrow 3 or 4)- β -D-GalpNAc-(1 \rightarrow 6)- β -D-Galf-(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow 6)- β -D-Galf-(1 \rightarrow 1)-D-Ribitol-(5-O-P-O \rightarrow \parallel O

In the capsular polysaccharide elaborated by *Haemophilus influenzae* type f^2 , also of the teichoic acid type, phosphate is linked to O-3 of a β -D-GalpNAc residue. The 13 C-n.m.r. spectrum contained signals for C-2, C-3, and C-4 of this residue at δ 53.6 ($J_{\rm C,P}$ 5.8 Hz), 77.0 ($J_{\rm C,P}$ 5.5 Hz), and 69.2 ($J_{\rm C,P}$ <1 Hz). The corresponding values for β -D-GalpNAc are δ 54.80, 72.01, and 68.65. In the 13 C-n.m.r. spectrum of S-29 (Fig. 1), the signal for C-2 in the β -D-GalpNAc residue appears at δ 53.56 (not coupled), and no coupled signals corresponding to those observed for the *H.i.* type f polysaccharide were observed. This finding clearly demonstrates that the phosphate group in S-29 cannot be linked to O-3 of the β -D-GalpNAc residue but has to be linked to its 4-position.

The 31 P-n.m.r. spectrum of S-29 contained only one signal, at δ 1.27, demonstrating that all phosphate is present as di-esters. The two-dimensional P-H correlation spectrum (Fig. 2) showed two correlations, at $\delta \sim 4.1$ and 4.55. The former could be assigned to H-5 and H-5' of the ribitol moiety (dd, large geminal and vicinal coupling constants) and the latter to H-4 of the β -D-GalpNAc residue

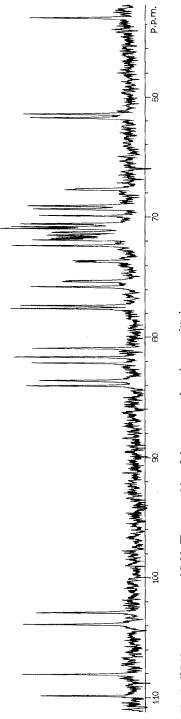


Fig. 1. ¹³C-N.m.r. spectrum of S-29. The extremities of the spectrum have been omitted.

(small coupling constants). The corresponding values for ribitol and β -D-GalpNAc are δ 3.81 and 3.98.

These complementary studies therefore demonstrate that S-29 is composed of repeating units having the structure 2. The n.m.r. spectra were, also in other respects, consistent with the proposed structure, and need not be discussed.

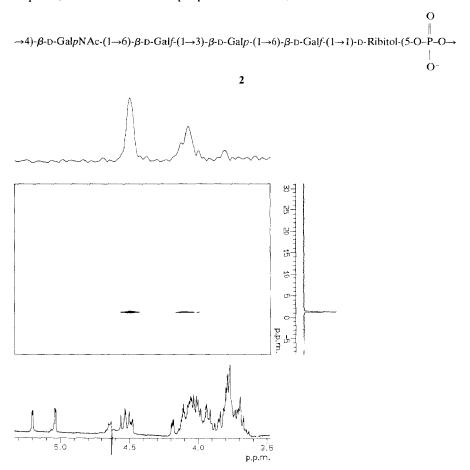


Fig. 2. Two-dimensional P-H correlation spectrum of S-29.

EXPERIMENTAL

N.m.r. spectra were obtained at 270 (1 H), 67.8 (13 C), and 109.3 MHz (31 P) with a JEOL GSX-270 instrument for solutions in D₂O. All spectra were recorded at 40°, using internal sodium 3-(trimethylsilyl)propanoate- d_4 (TSP, δ 0.00, 1 H), internal 1,4-dioxane (δ 67.40, 13 C), and external aqueous 2% phosphoric acid (δ 0.00, 31 P) as references.

NOTE 291

ACKNOWLEDGMENTS

This work was supported by grants from the Swedish Medical Research Council (03X-02522) and the Swedish National Board for Technical Development.

REFERENCES

- 1 E. V. RAO, M. J. WATSON, J. G. BUCHANAN, AND J. BADDILEY, Biochem. J., 111 (1969) 547–556.
- 2 P. Branefors-Helander, L. Kenne, and B. Lindqvist, Carbohydr. Res., 79 (1980) 308-312.